2013年1月17日 星期四

The general term of the Fibonacci Sequence

The Fibonacci sequence <Fn> :0, 1, 1, 2, 3, 5, 8, 13, 21,… which satisfies F0=0, F1=1, and Fk+2=Fk+1+Fk. The goal of this article is to find the general form of the kth term  Fk of  the Fibonacci sequence.

Let .

Consider , that is uk+1= Auk , where .

Because the characteristic polynomial of A is, the eigenvalues of A areand, and the corresponding eigenvectors are and . Of course {x1, x2} are linearly independent and generate uk.

Write u0=c1x1+c2x2, that is, and it’s easy to solve the coefficients and  . Hence

u1=c1Ax1+c2Ax2= c1λ1x1+c2λ2x2 ,
 … ,
uk=c1Akx1+c2Akx2= c1λ1kx1+c2λ2kx2
 .
Thus
.

沒有留言:

張貼留言